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A two-band model that includes edge interactions is derived for hydrogen-terminated, armchair-edge
graphene nanoribbons. This model is then used to obtain analytical expressions for the localization length of
these ribbons in the presence of environmental and topological edge disorder. Within the single-channel
regime, it is found that the maximum localization length of a ribbon with uncorrelated edge disorder is
proportional to the square of its width. Also shown is the dependence of the localization length on quasiparticle
energy and band gap. The analytical expressions have been verified by numerical transport calculations that
take all � channels into account.
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I. INTRODUCTION

Because of their relationship to carbon nanotubes,1,2

graphene ribbons could potentially offer room-temperature
ballistic transport at the micrometer scale.3 Unlike carbon
nanotubes, however, graphene ribbons have edges that are
vulnerable to disorder4–15 that could limit the localization
length,4,5 and hence, the length over which ballistic transport
could occur. There are two types of edge disorder: environ-
mental and topological. Environmental edge disorder is rec-
ognized by a disordered potential at the ribbon edges, which
for instance, is present in ribbons with two or more edge
terminations that randomly occupy the edge sites. Topologi-
cal edge disorder, on the other hand, is disorder among the
carbon interaction paths at the edges. An example of the
latter type of disorder is edge roughness. Both types of dis-
order can be present in experiments, and therefore, their ten-
dency to localize quasiparticle �electron or hole� wave func-
tions within ribbons needs to be further understood.

In a typical conducting wire with residual disorder, the
mean-free path is independent of the size of the wire. If the
wire is planar, the number of edge atoms is independent of
the width W of the wire, while the total number of atoms is
proportional to W; hence, edge disorder only acts on a small
ratio of atoms that is inversely proportional to W. It is there-
fore reasonable to expect that the mean-free path due to edge
disorder scales with W. Near the Fermi level in armchair-
edge graphene nanoribbons, however, this expectation would
be misleading. Herein, analytical expressions for the local-
ization length, which is related to the mean-free path, are
presented for the single-channel regime near the Fermi level.
The derivations are based on a two-band model that repro-
duces the band dispersions near the Fermi level of conduc-
tion and valence bands obtained through first-principles
methods.16,17 Environmental and topological edge disorder
have been modeled by Anderson disorder18 and by an edge
roughness algorithm,5 respectively. The expressions for both
types of disorder reveal some interesting scaling behavior: �i�
the localization length � is the longest in the linear dispersion
regime, where it scales as ��W2. �ii� In the regime near the
conduction- and valence-band edges, where the dispersion is
parabolic, the localization length scales as ��W3. This scal-
ing does not owe its presence to the parabolic dispersion but

rather the inverse width dependence of the effective mass.
Therefore, this scaling is not expected to be present in wires
characterized by a constant effective mass, which are often
assumed �see, e.g., Ref. 19�. �iii� If the energy is scaled with
the band gap, the localization length scales as ��W2, regard-
less of weather the system is in the linear or parabolic re-
gime. �iv� The maximum localization length is largely inde-
pendent of the graphene �-hopping parameter �, for
topological edge disorder, while �max��2 for environmental
edge disorder. �v� The slope of the localization length scales
as �� /�E�W3. That the maximum localization length in the
linear dispersion regime scales as ��W2 can partly explain
why ballistic transport, so far, has been difficult to observe in
experiments using narrow graphene ribbons. Also, the slope
of the localization length suggests that wider ribbons should
offer a sharper transition between high �on� and low �off�
conductance.

In the next section, the two-band model is derived. This
model is then applied in Sec. III, in which different types of
disorder are defined, and estimates of the localization length
for ribbons subjected to these types of disorder, are pre-
sented. The derived analytical expressions, in this section,
are verified by numerical multichannel transport calculations.
The results from Sec. III are discussed in Sec. IV and finally
some conclusions are drawn in Sec. V.

II. TWO-BAND MODEL

To reproduce first-principles band structures near the
Fermi level, an orthonormal tight-binding model of
hydrogen-terminated, armchair-edge graphene nanoribbons
must include edge distortions16 and third-nearest-neighbor
interactions,20 in addition to nearest-neighbor interactions.
While the band structures of this model can be obtained nu-
merically, they can generally not be obtained in an exact
analytic form. Fortunately, third-nearest-neighbor interac-
tions and edge distortions can be treated as perturbations to a
nearest-neighbor Hamiltonian.17

The nearest-neighbor model of armchair-edge graphene
ribbons is based on the nearest-neighbor model of
graphene;21 both models assume a basis set consisting of
orthonormal � orbitals. The primitive cell of graphene rib-
bons, however, contains many more atoms than the primitive
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cell of graphene. Consider for notational convenience and
without loss of generality, a ribbon with an arbitrary even
number N of carbon atoms in the zigzag chains that extend
across the strip. Helical symmetry can then be applied, which
is advantageous to translational symmetry because the mini-
mal helical motif contains, in this case, only half as many
atoms as the primitive cell, thus halving the number of atoms
that need to be treated explicitly. Helical symmetry allows
the ribbon to be constructed by performing a � rotation
about the ribbon axis for every 3d /2 translation of the motif
along the same axis, where d�0.142 nm is the carbon-
carbon bond length. These � rotations can be seen in Fig.
1�a�, where the hydrogen atoms are located on one edge in
one motif and on the opposite edge in neighboring motifs.

Using the site notation from Fig. 1�a�, the nearest-
neighbor Hamiltonian becomes

Ĥ1 = �1�
n=1

N/2

�
m=1

M

�cn,m
B† cn,m

A + cN/2−n+1,m−1
B† cn,m

A + cN/2−n,m−1
B† cn,m

A �

+ H.c., �1�

where �1�−3.2 eV,20 and cj,j�
� �cj,j�

�† � is an annihilation �cre-
ation� operator. The boundary condition along the ribbon
axis is periodic, i.e., cj,j�+M

�† ���=cj,j�
�† ��� for all j, j�, and �,

where ��� is the vacuum state. Because the difference be-
tween the onsite energies of hydrogen and carbon is much
larger than ���, any �-electron population on the hydrogen
sites can be neglected, and consequently, the wave function
must have nodes on these sites.22 Additionally, to keep
graphene solutions preserved in an infinite array of parallel

ribbons, the wave function must be odd in the transverse
direction at the hydrogen sites.20 These conditions are satis-
fied by the transverse boundary conditions

	c0,j�
�† ��� = 0,

cN/2+1,j�
�† ��� = − cN/2,j�

�† ��� ,

 �2�

for all j� and �. These boundary conditions are automatically
fulfilled by the transformation4,23,24

cn,m
� =

2
�N + 1

�
p=1

N/2

sin
2np�

N + 1
c̃p,m

� , �3�

which transforms the Hamiltonian in Eq. �1� to one that rep-
resents N /2 independent one-dimensional chains:

Ĥ1 = �
p

�
m

��p�pc̃p,m−1
B† c̃p,m

A + �1c̃p,m
B† c̃p,m

A � + H.c., �4�

where �p��−1�p−1 and �p�2�1 cos�p� / �N+1��. Each chain
p generates one pair of conduction and valence bands. The
bands of interest herein are the two bands closest to the
Fermi level, and they both come from the chain p= p�, where
p���N+2−mod�N−1,3�� /3. For narrow-gap armchair-edge
nanoribbons, p�= �N+1� /3, and for this p�, �p��p� =�1 and all
chain couplings coincide. The absence of a band gap in this
chain is inconsistent with the band gaps predicted by first-
principles methods,16,17,20,25 thus requiring that semiempir-
ical models go beyond the standard nearest-neighbor model
to be able to make qualitative predictions based on the band
structure near the Fermi level.

The failure to predict band gaps in narrow-gap armchair-
edge nanoribbons is overcome by including third-nearest-
neighbor interactions and edge distortions in the model.17

The third-nearest-neighbor Hamiltonian for one ribbon in an
array of identical, parallel ribbons is

Ĥ3 = �3�
n=1

N/2

�
m=1

M

�cn,m−1
B† cn,m+1

A + cn+1,m
B† cn,m

A + cn−1,m
B† cn,m

A � + H.c.,

�5�

where �3�−0.3 eV.20 The description of isolated ribbons
which have edges, requires an additional Hamiltonian
which subtracts third-nearest-neighbor interactions,
−�3�cN/2+1,j�

B† cN/2,j�
A +H.c.�, between neighboring ribbons in

the parallel ribbon array.17,20 This Hamiltonian, which only
describes edge interactions, should also reflect edge distor-
tions in the ribbons.16 Using the boundary conditions in Eq.
�2� to rewrite the third-nearest-neighbor interactions at the
edges, e.g., −�3cN/2+1,j�

B† cN/2,j�
A =�3cN/2,j�

B† cN/2,j�
A , the edge

Hamiltonian becomes

Ĥedge = �
m=1

M

���3 + 	�1�cN/2,m
B† cN/2,m

A � + H.c., �6�

where 	�1�−0.2 eV is an edge distortion parameter.17 It is
generally impossible to solve the eigenvalue problem that is

associated with the combined Hamiltonian Ĥ1+ Ĥ3+ Ĥedge.
Further analytical progress can, however, be made when the
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FIG. 1. �Color online� Schematic illustrations of a hydrogen-
terminated, armchair-edge graphene nanoribbon with width W and
length L. �a� The ribbon shown in real space. Dashed lines separate
helical motifs. Dash-dotted lines divide each motif into cells �j , j��
that each contains two atoms, A and B, separated by the bond length
d. The cell index j� counts the motifs from left to right. j counts the
cells within motif j�, starting with j=0 for the cell that contains
white hydrogen sites. �b� The ribbon representation in the two-band
model described in the text, where �� and �� are effective hopping
parameters.
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Hamiltonians, Ĥ3 and Ĥedge, are treated as perturbations to

the Hamiltonian Ĥ1. After transforming the combined
Hamiltonian using Eq. �3�, it is projected, to first order, onto
p= p� to give a two-band model described by the
Hamiltonian

Ĥ0 = �
m

���c̃m−1
B† c̃m

A + ��c̃m
B†c̃m

A� + H.c., �7�

where the parameters ����− �1−mod�N−1,3���� /�3�N
+1� and ����+3��3+	�1� / �N+1� with ���1−2�3�
−2.6 eV. This Hamiltonian is analogous to that describing
the alternating linear chain shown in Fig. 1�b�. The applica-
tion of the discrete Fourier transform

c̃m
� =

1
�M

�



e−i
mc̄

� , �8�

simplifies Eq. �7� to

Ĥ0 = �



���e−i
 + ���c̄

B†c̄


A + H.c., �9�

where the helical phase 
 is related to the translational wave
vector k through 
=3kd /2. From Eq. �9�, it is straight-
forward to obtain the bands of the two-band model. Their
energy dispersions are

��
� = � ���2 + ��2 + 2���� cos 
 , �10�

resulting in a band gap, Eg=2���−���, that agrees with first-
principles calculations.17 Also needed for the localization
length calculations, below, are the axial group velocity,
v�d� /�dk=3dd� /2�d
, and total density of states,
=M /��d� /d
�=3Md /2���v�. To an excellent approxima-
tion near the Fermi level, the velocity of a forward-moving
quasiparticle with energy E, is

v�E� �
3d

2�
 �

E
�E2 −

Eg
2

4
. �11�

Using the same approximation as in Eq. �11�, the density of
states becomes

�E� �
M

�
E

�
�E2 −

Eg
2

4
�−1/2

. �12�

III. LOCALIZATION LENGTH

Now recall that an intrinsic property of disordered
materials is the localization length.18 If a one-dimensional
disordered wire is long enough, the conductivity scales as
G�L��exp�−L /��, where � is one half the amplitude local-
ization length. For weak disorder, in a single-channel regime,
it has been proven that � equals the mean-free path of the
system,26 where the latter quantity could be derived from the
Fermi golden rule, yielding

�−1�E� =
�

�v
���− 
�V̂�
��2�avg, �13�

where �
�= �c̄

A†�ei��
�c̄


B†���� /�2 is the forward-moving

eigenstate of the two-band model at energy E, V̂ is the dis-

order potential, and � . . . �avg denotes an ensemble average
over the disorder.

Consider a nanoribbon with random uncorrelated short-
range disorder. The disorder could be modeled through the
application of a stochastic potential that produces random
fluctuations of the onsite energies at the ribbon sites,18 giving

V̂ = �
n=1

N/2

�
m=1

M

���n,m
A cn,m

A† cn,m
A + ��n,m

B cn,m
B† cn,m

B � . �14�

The onsite energies �� j,j�
� are selected from an Anderson dis-

tribution of width 	W. The back-scattering matrix element
for this potential is

�− 
�V̂�
� =
2

M�N + 1��n,m
���n,m

A + e2i��
���n,m
B �

� sin22np��

N + 1
e−2i
m. �15�

For uncorrelated onsite energies, ��� j,j�
� �� j�,j�

�� �avg

=� j,j�� j�,j���,����
2 for all j, j�, j�, j�, �, and ��, where

��
2= �	W�2 /12 is the variance of the Anderson distribution.

Using these relations, together with Eqs. �11�–�13� and �15�,
finally leads to an expression for the localization length
within the single-channel regime,

��E� �
2W
�3

�2

��
2�1 −

Eg
2

4E2� , �16�

where W= �N+1��3d /2 is the width of the strip. As
expected,4,9 this expression is inversely proportional to the
variance. The upper limit for this expression—were there no
band gap—is also in agreement with a previous prediction.4

Equation �16� contains an explicit width dependence, and an
implicit width dependence through the band gap Eg. Letting
E�Eg eliminates the latter width dependence, and the focus
can be brought to the former explicit width dependence,
which in this case is proportional to W �cf. Fig. 2�a��.

Arguably the most serious kind of disorder in graphene
ribbons is edge disorder.4,5 Edge disorder could be grouped
into two classes: environmental and topological. Environ-
mental edge disorder is defined by disorder that could be
modeled through a fluctuating edge potential, whereas topo-
logical edge disorder is disorder that affects the interaction
paths at the edges. The environmental edge disorder is herein
modeled by the potential

V̂ = �
m=1

M

���m
AcN/2,m

A† cN/2,m
A + ��m

BcN/2,m
B† cN/2,m

B � , �17�

where the onsite energies �� j
� are again selected from an

Anderson distribution of width 	W. The back-scattering ma-
trix element for the environmental edge disorder is

�− 
�V̂�
� =
3

2M�N + 1��m ���m
A + e2i��
���m

B� , �18�

which leads to the analytical estimate of the localization
length
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��E� � �e
4W2

9d

�2

��
2�1 −

Eg
2

4E2� , �19�

where �e is a factor that arises from a higher-order correction
of the eigenvectors due to the edge interactions in Eq. �6�;
the wave function amplitude at the edge carbon sites is re-
duced 8%, leading to �e��1−0.08�−4�1.4. The energy de-
pendence of the localization length can be seen in Fig. 2�b�.
Figure 2�c� shows the width dependence of the localization
length for a case when E�Eg. This figure also shows an
example of the localization length for a ribbon with topologi-
cal edge disorder. The topological edge disorder has been
modeled through edge roughness, where pairs of carbon at-
oms are added or removed with probability p0 / �1+ p0�. See
Ref. 5 for more information on how such edges are generated
and how steric problems are avoided. The edges have been
assumed to be repassivated with hydrogen atoms after the
edge disorder has been introduced. The addition and removal
of atoms could be modeled through the introduction of new
interaction paths between edge carbon sites of a ribbon with-
out disorder. This approach leads to the potential

V̂ = �
m=1

M

���Xm
�a�,1c1,m−1

B† c1,m+1
A − ��Xm

�r�,1cN/2,m−1
B† cN/2,m+1

B � ,

�20�

for the topological edge disorder, where � is here the
Kronecker delta and Xj�

�a� and Xj�
�r� are random variables

that describe edges that allow for additions or removals

of atoms, respectively. P�Xj�
�a�=1�= p0 / �1+ p0� and

P�Xj�
�a�=0�=1 / �1+ p0� are the probabilities of pairs of carbon

atoms being added or not added at possible defect sites in the
helical motif j�. Xj�

�r� has the same probability distribution as
Xj�

�a�. The backscattering matrix element of this potential is

�− 
�V̂�
� =
3�

2M�N + 1��m ��Xm
�a�,1 − �Xm

�r�,1� � cos�2
m + �� .

�21�

Again using Eq. �13�, the expression for the localization
length can be obtained. For the topological disorder, herein,
the expression is

��E� � �t
4W2

9d

3d2

�w
2 �1 −

Eg
2

4E2� , �22�

where �w
2 /3d2=2p0 / �1+ p0�2 is the variance of the ribbon

width and �t is a factor that has been introduced to compen-
sate for the fact that Eq. �20� does, in general, not describe
weak disorder. When p0→0, however, the system is argu-
ably weakly disordered and �t→0.31 converges. In this
limit, �t is a parameter that compensates for higher-order
corrections of the eigenvectors. Equation �22� is strictly only
valid when p0�1. Nevertheless, it seems to give approxi-
mate localization lengths for larger p0 if �t is treated as a
fitting parameter. Note that it is unlikely that Eq. �22� gives a
quantitative prediction of the localization length for other
examples of topological edge disorder; however, the main
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FIG. 2. Conductance localization length � of disordered graphene ribbons. Solid curves represent analytical estimates given by Eqs. �16�,
�19�, and �22�, and open symbols plots data from numerical transport calculations obtained using 104 random realizations over the disorder.
�a� For short-range disorder throughout the ribbons, � is proportional to the width W of the ribbons for quasiparticles with energy E=2Eg.
The disorder has been modeled through uncorrelated onsite energies with ��=0.087 eV. �b� � as a function of energy for a 6.3-nm-wide
ribbon with environmental edge disorder with ��=0.58 eV. �c� The left �right� triangles together with the associated solid curve have been
obtained assuming environmental �topological� edge disorder and should be read on the left �right� axis. In both cases, � scales with the
square of the width �E=2Eg�. The environmental and topological edge disorder use ��=0.58 eV and �w=0.16 nm, respectively. For the
latter disorder, �t=0.10.
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characteristics are expected to be the same. In particular, the
��W2 dependence of the localization length for E�Eg
should be valid for all first-order, uncorrelated edge disorder
in armchair-edge graphene ribbons.

To verify the accuracy of the expressions for the localiza-
tion lengths above, complete multiband transport calcula-
tions were preformed based on G= �2e2 /h�Tr�tt†�,27 where
the trace was calculated using a Green function technique.28

Numerical estimates of the localization length were then
computed using −���ln G�avg /�L�−1. Both the disordered rib-
bons and their leads, which have been assumed to be semi-
infinite ribbons of the same type without disorder, were de-
scribed by Hamiltonians that explicitly include both first-
and third-nearest-neighbor interactions and edge interactions.
The former Hamiltonian also included the disorder potentials
that pertain to the considered type of disorder in the sample
region. Note that the choice of leads should have no affect on
the localization length. All numerical calculations showed
that the analytical expressions for the localization length are
reliable within the single-channel regime �cf. Fig. 2�.

IV. DISCUSSION

The width dependences in Eqs. �16�, �19�, and �22� have
several causes. First, it is important to realize that the total
density of states is typically proportional to the number of
atoms, and hence W. This W cancels out a usual W−1 factor

from ��−
�V̂�
��2 in Eq. �13� for disorder through the mate-
rial. Within the single-channel regime of armchair-edge rib-
bons, however, the total density of states is independent of
the width, for E�Eg �cf. Eq. �12��, and therefore, does not
compensate the W−1 factor, leading to the scaling behavior
seen in Fig. 2�a�.29 Second, edge disorder is, as the name
suggests, confined to the edges, reducing the affected atoms

and leading to ��−
�V̂�
��2�W−2. As the density of states is
still width independent in the single-channel regime for
E�Eg, the localization length in Fig. 2�c� must scale as
��W2.

In both Figs. 2�a� and 2�c�, the energy has been assumed
to be proportional to the band gap. This assumption is not
only made for convenience but also makes physical sense, as
the band gap provides an energy scale near the Fermi level.
Sometimes, however, it might not be desirable to relate the
quasiparticle energy to the band gap; instead, the quasiparti-
cle energy E could be assumed to be a fixed energy 	E
above the band edge Eg /2. Near the band edge, the disper-
sion of the two-band model can be expanded using effective
mass theory, leading to ��k�=Eg /2+�2k2 /2m�, where
m�=Eg /2vF

2 . In this region, where the dispersion is parabolic,
the parentheses in Eqs. �16�, �19�, and �22� can be expanded
for small 	E�Eg /2, giving �1−Eg

2 /4E2��2	E /m�vF
2 .

Typically, m� is a constant, independent of the width of the
material. In the armchair-edge graphene ribbons described
herein, however, m��W−1, thus introducing a width depen-
dence to the localization length that in this parabolic region
scales as ��W3. As the quasiparticle energy is increased, the
localization length scaling should exhibit a crossover from
��W3 to ��W2, the latter being the scaling in the region of
linear dispersion, where Eg

2 /4E2 is small. The localization

length in the region of linear dispersion is largely indepen-
dent of the energy E and is also longer than in the region of
parabolic dispersion �cf. Fig. 2�b�� for all widths. Because of
the stronger width dependence of the localization length in
the parabolic regime, one could imagine that the localization
length would become longer than in the linear regime for a
sufficiently large width. This is not the case, as evident from
the factor �1−Eg

2 /4E2��1 in Eqs. �16�, �19�, and �22�, which
shows that �→�max as Eg

2 /4E2→0.
In electrical devices that exploit the difference in conduc-

tance between the “on” and “off” states, it is desirable that
these states have sharp transitions between them. The sharp-
ness of the transitions is expected to be related to the slope of
the localization length near the band edge, which scales as
�� /�E=�maxEg

2 /2E3�W3. That the slope is higher for wider
ribbons has also been shown through numerical
calculations.5

A key difference between environmental and topological
edge disorder is how each scales with the hopping parameter
�. The environmental edge disorder potential is determined
by external influence, herein modeled by an Anderson disor-
der potential that is independent of �. However, a � depen-
dence enters the localization length in Eq. �13� through the
group velocity and density of states. The expressions in
Eqs. �11� and �12� lead to a localization length that scales as
���2 �cf. Eq. �19��. For topological edge disorder, on the
other hand, the disorder potential, which describes additions
or removals of paths, is proportional to � in Eq. �20�. As a
consequence, the � dependences from the velocity and den-

sity of states are cancelled out by the ��−
�V̂�
��2��2 factor
in Eq. �13�, leading to a localization length for topological
edge disorder that is independent of � �cf. Eq. �22��.

V. CONCLUSION

Because of the scaling of the localization length, one
could conclude that wider strips are more robust against
short-range edge disorder, especially if the disorder is con-
fined to the strip edges. Owing to the scaling of the slope of
the localization length, wider ribbons also have the advan-
tage that they should exhibit a faster rise in the conductance
near the band edges, as the quasiparticle energy is increased.

Another important point, highlighted by Fig. 2�c�, is that
the localization length in ribbons with topological edge dis-
order is typically much shorter than in ribbons with environ-
mental edge disorder. This fact might in part explain why
ballistic transport, so far, has been so elusive in experiments
using narrow graphene ribbons, which have typically been
plagued by topological edge disorder. It also emphasizes the
importance of controlling the edges in graphene ribbons, in
particular, the narrow ones. Hopefully, techniques such as
nanocutting,30–32 Joule heating,33 and unzipping of carbon
nanotubes34,35 could lead to great improvements in this area.
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